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A new method for block-diagonalizing large Hamiltonian matrices, in closed form, is 
described. The method is based on (i) a general unitary transformation due to Slichter, and (ii) 
Fano's unit spherical operators ~]J(Ii,/j). The method is illustrated with a simple three spin 
1/2 dipolar coupled spin system, characterized by off-block-diagonal unit spherical tensors 
U02 (3/2, 1/2, a) and ~0 (3/2, 1/2', a). In addition, it is pointed out that any Hamilton_ian matrix 
can be re-labelled in terms of fictitious spin labels, enabling a wide variety of unit spherical ten- 
sors to be used in block-diagonalization. For example, a single spin 5/2 matrix can be re- 
labelled using three spin labels 1/2, 1/2', and 1/2", respectively. Thus the tensor algebra 
required to block-diagonalize a 6 x 6 matrix is determined solely by the properties of the Pauli 
spin matrices. Finally, it is shown that re-labelling within the unit spherical tensor framework 
provides a unifying framework for standard basis operators, fictitious spin 1/2 and 1 opera- 
tors, and others. The fictitious spin 1/2 unit spherical operators discussed in this paper differ 
from those of Vega and Pines. 

1. I n t r o d u c t i o n  

In the interpretat ion of  N M R  experiments on multiple connected spin systems, 
one is frequently confronted  with the need to diagonalize large Hami l ton ian  
matrices.  For  coupled spin 1/2 nuclei the dimensions of  the Hami l ton ian  are 
2 n × 2 n, where n is the number  of  connected spins. Thus for 2(3) spins the size of  the 
Hami l ton ian  matrix is 4 x 4(8 x 8), respectively. I f  the parameters  of  the Hamil to-  
nian are known,  it is a relatively easy mat ter  to obtain the eigenvalues and eigenvec- 
tors using numerical  means. However ,  if the parameters  are unknown,  it is 
advantageous  to seek solutions in closed form. Given the latter, it is often possible 
to obta in  explicit expressions for the time evolut ion of  the nuclear density matrix 
p(t) ,  a valuable aid in the interpretat ion o f  experimental  results. 

However ,  in general, there are many  cases where solutions in closed form are 
impossible. Only if the dimensions of  the matrix in question are ~< 4 x 4, can analy- 
tical solutions be guaranteed.  Consequently,  in the case of  more  than three coupled 
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spin 1/2 nuclei, solutions in closed form are only possible if the matrix in question 
can be block-diagonalized into submatrices with dimensions less than 4 x 4. If this 
stratagem fails, the only resource is to obtain approximate eigenvalues and eigen- 
vectors using either perturbation theory or Newton's method of successive approx- 
imations (see, for example, ref. [1 ]). 

In this paper, the problem of block-diagonalizing large Hamiltonian matrices is 
addressed within the framework of Fano's unit spherical tensors [2-4]. The basic 
idea behind this work is that it is easier to block-diagonalize a given matrix than to 
reduce it to its full diagonal form. As a first step in this direction, a simple three 
dipolar coupled spin 1 /2 problem is examined using geometries other than the sim- 
ple equilateral triangle considered in ref. [4]. In general, the 8 × 8 Hamiltonian 
matrix in question is characterized by the presence of off-block-diagonal unit sphe- 
rical operators 02(3/2, 1/2, a) and 02(3/2, 1/2', a), where I = 3/2, 1/2, and 1/2' 
are the spin states available to the three spin 1/2 spin system [3,4]. Thus this exam- 
ple provides a simple introduction to the problem of block-diagonalizing large 
matrices. In particular, it is shown that (i) for the problem in question a perturba- 
tive approach used by Slichter [5] can be summed to infinite order, and (ii) this 
result can be used to "force" block-diagonalization of the 8 x 8 matrix into two 
4 x 4 matrices. Finally, using the observation that the Zeeman projection 
(ml + m2 -t- m3) is a "good quantum number", the matrix in question is further 
reduced to a one 2 x 2 plus two 3 x 3 matrices. The two distinct methods, which 
appear to have little in common with each other, are contrasted and discussed in 
some detail. 

For brevity, it will be assumed that the reader is familiar with the terminology 
and properties of the unit spherical tensors, as discussed in refs. [2-4]. 

2. Three coupled spin 1/2 problem 

Consider the three-spin 1/2 nuclei shown in fig. 1. Here the are vector of the 
plane formed by the three spins is parallel to the applied magnetic field H.  However 
the distances a, b, and c between the spins are not necessarily identical. 

Following eq. (24) of ref. [4], the Hamiltonian of the dipolar coupled spin system 
in the strongly coupled representation can be written as 

3{ = tiAwgz + a U d (~, ~) + + 7 Ud (~, i ,  a),  (1) 

where (i) the spins available are I = 3/2, 1/2, and 1/2', respectively, (ii) the unit 
spherical tensors are defined via 

<IIMlI~f~([3,[4)II2M2>=(_l)I2_MI(2K.~_l)l/2(-MliT 1 go ~2)t~ll13t~I214, 

(2) 
(iii) the Zeeman offset is given by 
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Fig. 1. Three coupled spin 1/2 nuclei. The area vector A of the plane formed by the spins is parallel 
to H. However the distances between the spins a, b, c, are arbitrary 

3-Cz/h=Aw~z=A~[w/-5ul(3 3)+ 1~^11 1)+ 1 frlrl' v/-~Uo(~,2 ~ v o k : , ½  t) , 

in terms of unit tensors, (iv) the coefficients of the dipolar Hamiltonian are 

1 
a = ~ [D12 + 913 + D23], 

2V0 

(3) 

3 [(D13 + D23) - 2D12], 

3: = ½[D2s - D l s ] ,  (4) 

and (v) 

Dij = #°(g#N)2 [1-- 3 COS2 Oij] (5) 

Here the average o v e r  c o s  2 0 implies that the spin system in question may be spin- 
ning about some molecular axis, which is not necessarily collinear with the applied 
field H.  

Note that the first two terms in eq. (1) are block-diagonal in I, whereas the last 
two terms are off-block-diagonal. Further, if D12 = D13 = D23, ]3 and 7 vanish iden- 
tically, and the Hamiltonian is block-diagonal in I. This is the case for three identi- 
cal spins placed at the corners of an equilateral triangle, discussed earlier in 
ref. [4]. 

3. Per turbat ion  theory: a unitary t ransformat ion 

First, we note that the Hamiltonian of eq. (1) can be subdivided into block-diag- 
onal and off-block-diagonal terms: 
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~'~ = ~D -}- ~-~OD , (6) 

where 

~'[D = hAoaJ= + a(J2(~,~) (7) 

and 

 oi, = +) + (8) 

Thus we seek a unitary transformation which will reduce 9£ to the block-diagonal 
form. 

As noted earlier, a similar problem has been tackled by Slichter [5] in connection 
with the atomic spin-orbit coupling term AI. s, which prevents block-diagonaliza- 
tion in the l and s submanifolds. Following ref. [5] therefore, we seek a unitary 
transformation exp(S) such that 

9-( = e-Sg-Ce +s , (9) 

where, hopefully, 9£' is block-diagonal. 
The right-hand side of eq. (9) can be expanded using the nested commutator 

expansion 

e-Sgge+S= ~ -  [S,S£]_ +~.[S,[S, 9£]_]_ -~[S,[S,[S,~]_]_] + . . .  , (10) 

or alternatively 

e-S(gzD + 9£OD)e +s = 9£D + 9£OD -- [S, 9£D]_ -- [S, 9£OD]_ 

+~[S,[S, gZD]_I +~[S,[S,  gZOD]_]_- . . . .  (11) 

If 9£OD is small, S should be ~ 9-COD, and so the series should converge. Further, if 
we choose S such that 

9£o0 = [S, 9£D]_, (12) 

then 

9£ t = e-S(9£D + 9£OD)e +s = 9£D--[S, 9£OD]_ + 1[S, [S, 9£D]_]_ + Ord(S 3) 

= 9£D-  ½[S, 9£OD]_, (13) 

to order S 3. Note that for this strategem to work, S must be off-block-diagonal 
and such that [S, HOD]_ is block-diagonal. 

From the first row of the commutators given in table 1, we see that 

^ 2 3 1 ^ 2 3 3 l i t ' r 2 / 3  ½, a). [U6 (~,~,s), = (14) 

This suggests therefore that the required operator S is given by 

_ f r 2 / 3  1 t S =  [flLr2(~,½,s) + r t a 0 ~ , ~ , s ) ] .  (15) 

Moreover, since 
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Table 1 
Some commutators for the three coupled spin 1/2 spin system 

395 

,~,s), vd (~,~)]_ 
" 2 3  1 ^ 2 3  1 [V~ (i, i ,  s), V~ (i , i ,  a)]- 

^ 2 3  1 " 2 3  I ! [u~ (~, ~, ~), u~ (~, ~ ,a)]_ 
^ 2 3 1  ^ 3 3  [u~ (~, ~, ~), ~ (~, ~)]_ 

[02(~ ,½, a), ~o ({, 3 ) ~]- 

,~,~), 0g0 (~,~)]_ 
~ 2 3  I ^ 1 1  [u~ (~, ~, ~), ~(~,  ~)]_ 
^ 2 3  I ^ 1 I t [u~ (~, ~, ~), Og0 (~, ~ ,~)1_ 
^ 2 3  1 ^ I I  t [U~ (~,~, a), ~o (i,2 ,s)]_ 

__  I ~T2 [3  -- ivo , i , l , a )  

_ tern3 1 ~ +  f ~ r ~ , # _ ~  ^ ~ 

__  l f [ 2 ( l  I t . ' ,  
- -  - - ~ 0  ~ ,  ~ ,  ~) 

_ ! f r e t 3  ~ a )  
- -  --2'- '0 ~,~ ,~ ,  

__ 1 ~ [ 2 ( 3  1 o3 

I ~ r 2 ¢ 3  I ~ ,  
= ~ ~0ki,i  ,u) 

1 ~ r 2 , ' 3  1 x ,  
= ~ t"O ki,i, "~) 

1/~/ -2 /3  1 t " ~  
= ~ O ~ , ~ , u )  

I~T2(3_ I t ~ 
= ~ '~0  ~ 2 , 2  ,~1  

[~z, fT2:3 1 ~0~,~,s) ]  [~z, ^2 3 1' = U6 (~,~ ,s)] = 0 ,  (16) 

(see for example the Racah-like identities discussed in ref. [1]), the Zeeman term in 
the Hamiltonian is unaffected by the unitary transformation of eq. (15). In practice, 
it is usually a simple matter to find S by inspection. However, it is also possible to 
determine S element by element, using the method set out in appendix D ofref. [5]. 

With the above choice of S (15), it is easily shown that 

[ S , ~ o d _  ~ 2 + ~ 2  ~2 3,3_) ^ 3 3 v ~  2 ^ 1 - - -  [ u r ( ~  2 - ~ ( ~ , ~ ) ]  + ~(~,~)  
t o~ o~ 

+ v~TZ Don' 1'~ 2"/~^ 1 1' 
"~0,~,i,  + ~0(i ,g,  s) = X ,  (17) 

oz c~ 
J 

where (i) we have made use of the second and third entries in table 1, and (ii) X is 
a shorthand notation for this particular commutator. The new transformed Hamil- 
tonian therefore takes the form 

~2+~ ^ 2 3  3 ~ r 3  3~1 
= - = [ u r ( ~ , ~ )  - o , ~ , ~ , J  9£' ~D I[S, 9£OD]_ 9£D -~ 2a 

+ "P ~ ( 1 ,  1,, ^ 1 1 - - ~ ( : , : , ~ )  (18) - t - ~ ' ~ 0 ( ~ ' ~ )  ~ - ~  0 ~ ' ~ ) q - ~ " Y  ^ 1 1 t 

to order S 3. 
Alternatively, eq. (18) can be re-written in the form 

~ '  = hAwJz -'[- a t U~ (~, 2 ^  2 3 3) + ~-{0R, (19) 

where (i) the effective strength a '  of the second rank dipolar term affecting the 
spin I = 3/2 state is now given by 
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f12 q- ot 2 
a ' = a +  2a ' (20) 

and (ii) the zero-rank terms are given by 

+ a) + 
~"C0 R -  2 a  2 ~ ^ l 1 

frOrl' !'~ f13' ^ 1 1' 
+ J + - -  

Thus the 8 x 8 matrix has been reduced to two 4 x 4 block-diagonal matrices, 
to order ~ S 3. In summary, therefore, the principal effects of the transformation 
are (i) to increase the energy separation between the I = 3/2, 1/2 and 1/2' spin 
levels through the action of the zero-rank terms, (ii) to modify the strength of the 
dipolar field term acting on the I = 3/2 spin state, and (iii) to cause admixing 
between the 1/2 and 1/2' spin states. Note that, for convenience, we have used the 
spin labels 3/2, 1/2, 1/2' to describe the new partitioned matrices of the 8 x 8 
matrix, even though the original wave functions are now admixed. In summary, 
therefore, for weak fl and 7, N M R  experiments should be performed treating the 
I = 3/2 spin system as if it were a single spin system, but with a small change in the 
dipolar splitting. 

Finally, since the manifold spanned by the I = 3/2 state is already diagonal, 
the problem has been reduced to a diagonalization of the 4 x 4 matrix associated 
with the I = 1/2 and 1/2' spin manifolds. After some minor manipulation we find 

E1 = ~Aod -[- f12/o~ 4- 4flE,'~/[o:(fl 2 - 4 ) ] ,  

= h &  + ? / c ,  + - ?)], 
E3 = - h A w  + fl2 / a + 4flE72 / [a(fl  2 - 72)], 

E 4 = - -hAw q- 4/OL "Jr" 4flE3~/[a(f l  2 - 72)], (22) 

to order S 3 (or 9~3D). 

4. Infinite series: b lock-diagonal izat ion 

Given the success of the perturbative approach described in the previous sec- 
tion, it is natural to enquire whether or not it is possible to do better by going to 
higher order in S. In fact, it is possible to sum the entire series. 

For reasons which will soon become apparent, it is advantageous to modify, 
slightly, the unitary transformation used in the previous section. In place of eq. (9), 
therefore, we write 

5£' = e-~fffe + ~  , (23) 

where A is a constant to be defined later. Next we observe that the left-hand side 
ofeq. (23) is really the sum of two infinite exponential series. Explicitly 
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H p ___ e-XSHe +xs = e-~sHDe +;~S + e-;~SHoDe +;~S 

A 2 
= "~- ~'(~D -- )~[S, H D ] _  "[- ~.1 [S2, ~'[D]_ 

A2 
+ H O D -  A[S, HOD]_ + ~.V [$2, HOD] . . . .  , (24) 

where [$2, ~ _  is a short-hand notation for [S, [S, H]_]_ etc. 
The first two single commutators in eq. (24) have already been obtained. On eval- 

uating the double commutator [$2, HOD]_ we find 

[$2, HOD]_ -- 4(/32 + 72) HOD = --~2HoD (25) 
OL2 

where (i) we have made use of the commutation relationships summarized in table 
1, and (ii) the constant ~ is given by 

2(/32 + 72)1/2 
= (26) a 

The appearance of the off-block-diagonal term HOD term in eq. (24) means that 
both the exponential series are "closed" in the sense that only HOD and 
[S, HOD]_ (= X) ever appear. Proceeding in this fashion therefore we obtain 

A 2 
~_[t = _.~ ~-[D AHoD + 21 av A3 ~2~.[,.,,., A4 F2X - ' 

A4 
A= "2H A3 ~2X + ~v ~4HoD (27) + ~t'[OD -- A~r -- ~ ~ OD + ~ q . . . .  

These two series can be summed exactly. We find 

~.[t = ~}[D "+'f~'[OD "+" g[S, ~[OD]- , ( 2 8 )  

[lcos , sin ,t 
g ---- ~2 (30) 

We are now in a position to make an interesting observation. If we choose A 
such that 

tanA~ = ~, (31) 

the coefficient f associated with the off-block-diagonal Hamiltonian HOD 
vanishes identically. Further, given eq. (30) it is easy to show that the coefficient g is 
now of the form 

where 

f = [cos A~-  ~sinA~] (29) 

and 
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t~ 
- , (32) 

g a + r /  

where 77 is given by 

~7 = [ a2 + 4(fl 2 + ,y2)]1/2 (33) 

Thus the Hamil tonian takes the form 

^ 2 3 3  

1 {(f12 +~)[0o:(~ ,_3)_  ~oo(3,_3)1 +a+r l  2 2J 

2 ~ 11 } + + ^ "½') /~0(g, + g ,s) , (34) 

which spans the block-diagonal 4 x 4 submanifold of  the I = 3/2 state, and the 
4 x 4 submanifold o f  the I = 1/2 and 1/2' states. 

In summary,  therefore, a procedure for block-diagonalizing an 8 x 8 matr ix  
has been described, within the f ramework  of  unit  spherical operators.  In the next 
section, an alternative method  is presented which allows the same matr ix  to be 
block- diagonalized into one 2 x 2 and two 3 x 3 matrices. 

5. B l o c k - d i a g o n a l i z a t i o n  using gz as a good  quantum number  

So far we have not fully exploited the fact that gz commutes  with the Hamil to-  
nian ofeq.  (1). Since the projection Ofgz along the z-axis is a "good  quan tum num- 
ber",  it is advantageous to re-label the Hamil tonian  matr ix  in terms o f  
[Mz = 3/2) ,  IMz = 1/2) ,  etc. Proceeding in this fashion, we obtain the Hamil to-  
nian matrix 

a + 3hAW 

0 

0 

5 ~ = ½ x  0 

0 

0 

0 

0 

which consists 

1 ½> I !22!> 1½'-½> 1 -½> 1 !2-½> 1½'-½> 
0 0 0 0 0 0 0 

a - 3hAw 0 0 0 0 0 0 

0 h a w -  a - f l  - 7  0 0 0 

0 - 8  haw 0 0 0 0 
0 -7  0 hAw 0 0 0 
0 0 0 0 - a  - hAw fl 7 
0 0 0 0 /3 -hAW 0 
o 0 0 0 "r o -hAW 

135) 

of  one 2 x 2 matrix and two 3 × 3 block-diagonal matrices. These 
small matrices are easily diagonalized to yield the eigenvalues and eigenvectors 
summarized  in table 2. 

F r o m  an examinat ion o f  table 2, it is clear that  f rom a mul t ip le-quantum point  
o f  view, the triple quan tum frequency of  3Aw is unaffected by the presence o f  the 
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Table 2 
The eigenvalues and eigenvectors of the Hamiltonian of eq. (1), in the strongly coupled representa- 
tion. 

El !(5 + 3hAw) ~'-~2 

E2 ! ( 5  - 3hA~) -~'2 

~, = ½(h~ + ½(~ - 5)) 

e5 = ½ ( ~  - ½(n + 5)) 

e6 = - ½ ~  

~7 = ½ ( - ~ . ,  + ½(~ - 5)) 

,r~ = ½(-~zx,,,- ½(n + ~)) 

where ~7 = X/52 + 4 ( :  + 7 ~) 

I~q) 3 3 =1~,~> 

1~2) 3 3 = 1 ~ , - ~ >  

1 [ ~ u 3 > = - -  !_l V l (~12,5>- &,~>)  

1 
1~4) = ~ ( ( 0  - a)l-~,½) - 2~1½,½) - 271½',½)) 

1 
~, ~) + 2/~1½, ½) + 271½', ½)) ~5> = ~ ( ( n +  5)13 

1 (~1-~,-½> - ~1 ~-',-~-> 

5~' ~-,-~-> + ~Zl½,-½> + 2~1½', ~-½>) 

1 5)13, _ ½ > -  2~1½, _ ! ) -  2.~ v ~,., I ~ ' , > = ~ ( ~ +  ~ . ~ , - ~ .  

off-diagonal terms/~ and 7- However, this is not the case for most of the single 
and double quantum frequencies, unless of course/3 and 3' are identically equal to 
zero. 

Using table 2, it is easily shown that the characteristic equation of the Hamilto- 
nian is of the form 

( )( .o,)]  30, × ~ hAw2 ¼(O- ~) ~ +--5--  

The first term in square brackets is associated with the pseudo spin 3/2 submani- 
fold, and the second term by the pseudo spin 1/2 and 1/2' (4 × 4) submatrix. This 
statement is easily verified by working out the characteristic equation of the trans- 
formed Hamiltonian ofeq. (34). For example, for the pseudo spin 3/2 submanifold 
of the matrix, we have 

3 3 h ~ I ~ ( ~ )  ^:2 3 3 _ , _ r l - ° ~ r f r 2 : _  3_'~ ^ 3 3 
9£(i,i) = + a U 6 ( 2 ' i ) "  4 tv0 ,2 ,2 : -  ~0(i,2)], (37) 

or in matrix form 
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3 3 , 9 = 

o~ 
+ 2 0 0 0 

0 ½hAw rl + a 0 0 
4 

o o o 

o o o 

, ( 3 8 )  

in accord with the first square bracket of the characteristic equation (36). 
One final point should be made before concluding this section. From an exami- 

nation of the eigenvalues ofeq. (36), it is evident that it is not possible to distinguish 
between the coefficients/3 and 7. They always appear in the combination/32 + 72. 

6. Summat ion  of  infinite series: a general me thod  

It should, of course, be acknowledged that the three spin problem discussed in 
this paper is relatively simple in that the Hamiltonian matrix can be block-diagona- 
lized, simple, without recourse to unit spherical tensors. Nevertheless, the results 
obtained demonstrate the viability of the unit spherical tensor approach. In more 
complicated problems, it may prove difficult to sum the nested commutator expan- 
sion. Thus it is advantageous to seek a more general approach. 

Firstly, we assume that a transformation S can be found such that 

[S, ~[~D]_ = ~OD, (39) 

where the diagonal and off-diagonal Hamiltonians 9£D and HOD are now general. 
Thus we seek to evaluate the expression 

5~' = e-~S~e+AS. (40) 

Secondly, since the unit spherical tensors form a complete set, any Hamiltonian 
can be expressed in form 

J-(/= Z Z ZPlQ(Ii ' I j")(- /~ (Ii'[j'e)' (41) 
Ii,I: K,Q 

where the Fano coefficients are given by 

p~(li, Ij, e) = Tr[((J~ (Ii, Ij, e) )te-aS~e+AS] . (42) 

Consequently, if the eigenvalues EN and eigenfunctions ISN> of S are known, the 
required Fano coefficients can be rewritten in the form 

p~(Ii, Ij, e) = ~ <SNI(U~(Ii, Ij, e))tlSM><SMI~ISN>e -A(EM-E") . (43) 
N,M 

Thus the problem of diagonalizing the Hamiltonian 9£ has been reduced to the pro- 
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blem of diagonalizing S, which is a far simpler problem. For the three spin 1/2 pro- 
blem considered in this paper, the unitary transformation is given by 

'0  0 0 0 0 0 0 0 

0 0 0 0 - 3  0 - 7  0 

0 0 0 0 0 3 0 7 

S 1 0 0 0 0 0 0 0 0 
= - ×  (44) 

a 0 /3 0 0 0 0 0 0 ' 

0 0  - 3 0  0 0 0 0 

0 7  0 0 0 0 0 0 

0 0  - 7 0  0 0 0 0 

which, after re-labelling, is readily diagonalized. The eigenvalues consist of six 
roots with eigenvalue zero, two repeated roots with eigenvalue +ix/72 + 32, and 
two repeated roots with eigenvalue - ix/72 + 32. This observation strengthens our 
initial supposition that it is easier to block-diagonalize a given matrix than to 
reduce it to its energy representation. Proceeding in this fashion, therefore, it is pos- 
sible to determine all of the Fano coefficients which determine the transformed 
Hamiltonian :~'. Finally, ~ '  can be reduced to a block-diagonal form with an 
appropriate selection of the adjustable parameter ~. 

7. Fict i t ious spin labels 

So far, the problem of three coupled spin 1 /2 nuclei has been addressed in terms 
of the three angular momenta 3/2, 1/2, 1/2' available to the nuclear spin system 
in question. However, it is worth noting that the 8 x 8 Hamiltonian matrix could 
equally well have been re-labelled, from the start, in terms of two "fictitious spins" 
3/2 and 3/2' (4 + 4 = 8), or two "fictitious spins" 2 and 1 (5 + 3 = 8). In fact any 
Hamiltonian matrix can be re-labelled using a suitable set of"fictitious spins". For 
example, the 6 x 6 Hilbert space of a "real" single spin I = 5/2 could be re-labelled 
in terms of two "fictitious" spins 11 = 3/2 and 12 = 1/2. Some possible spin labels 
for matrices with dimensions less than 10 x 10 can be seen in table 3. Clearly, each 
problem should be addressed on its own merits. Note that it is not possible to mix 
integer and half-integer spins using unit spherical tensors of integer rank 
(K = 0, 1 ,2 , . . . ) ,  by virtue of the triangular vector-coupling rule. 

Three other points should also be made. In the first place, any matric dimension 
n can be re-labelled with spins (01,02, 03 , . . . ,  0n) where the individual spins 0i are 
different. In practice, this corresponds to the standard basis set, since all entries in 
the 1 x 1 manifold spanned by the submanifold 0i x 0j are either 0 or 1 (see, for 
example, ref. [6] or [7]). Thus the re-labelling scheme proposed in this paper has, as 
its trivial limit, the standard basis set. Secondly, we note that all half-integer spin 
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systems can be re-labelled with spins (1/2, 1/2', 1 /2" , . . . ,  1/2"). Thus the tensor 
algebra is reduced to that of the 2 x 2 Pauli matrices, which can only support rank 0 
or 1 tensors. However, while these fictitious spin 1/2 unit spherical operators bear 
some resemblance to the "fictitious spin 1/2 operators" of Vega and Pines [8], 
and the "single transition operators" of Wokaun and Ernst [9], they are not identi- 
cal. For example it is not possible to use unit spherical fictitious spin 1/2 operators 
for I = 1 spin systems. In fact unit spherical spin 1/2 operators cannot be used for 
integer spin systems. In such cases, it is necessary to use either fictitious spin 1 or 0 
operators, as shown in table 3. 

8. C o n c l u s i o n s  

In this paper, a systematic method for block-diagonalizing Hamiltonian 
matrices in a closed form has been described, using a simple three spin 1/2 dipolar- 
coupled nuclei as an example. In particular, it has been shown that unit spherical 
tensors can be used to block-diagonalize an 8 × 8 matrix into two 4 x 4 matrices by 
(i) summing an infinite series, and (ii) suitably choosing an adjustable parameter. 
In addition, a simpler method of block-diagonalizing the matrix in question has 
been described, which made full use of the symmetry in the problem (i.e. 
[gz, ~(]_ = 0). Both approaches lead, of course, to the same set of eigenvalues. In 
summary, therefore, one should strive to exploit all of the symmetries resident in 
the Hamiltonian to the full, particularly for large spin-systems. However, once this 
has been done, the only hope for further block-diagonalization presumably rests 

Table 3 
Some fictitious spin labels for matrices with dimensions ~< 10. Not all possibilities are listed. 

Dimensions Spin labels 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

21-, 0 + 0" 

1,0+0'+0" 

3 1.~ t 1+0 ~,~-~, 

2 ,1+0+0'  
5 3_/_1 I i 1 ! Itt 1 t ~,~_~,~_~ + ~ , 1 +  

3,1+1'+0 

7 5.1_1 3 .g31 ? 1 t ~,~_~,~_~ , . +  1,1 + +0+0" 

4,2+ 1 +0,3+0+0" 
9 7 . .LI  5..l_3 54_1_1 I I 3 3 I 
~ , ~ , ~ _ 2 , 2 _ 2 _ ~ , ~ _ F ~  + 1  
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with the spherical tensor  m e t h o d  described in this paper.  However  should  th is  stra- 
t agem fail, it is still possible to develop a high order  block-diagonal  pe r tu rba t ion  
series, in a systematic fashion. 

In addi t ion,  it has been demons t ra ted  that  any matr ix  can be par t i t ioned using 
a wide variety of  fictitious spin labels. Un i t  spherical tensors provide an under ly ing  
f r amework  for s tandard  basis operators,  fictitious spin 1/2, uni t  spherical opera-  
tors and  others. Fo r  example,  a single spin 5//2 (6 × 6) matr ix  can be re-labelled 
using spins 1 /2, 1 /2' ,  and  1 /2", respectively. Thus  the block-diagonal izat ion of  the 
(6 × 6) mat r ix  is de te rmined  by the algebra of  the Pauli  spin matrices.  

Finally,  it has been poin ted  out  that  it is not  possible to par t i t ion  a given matr ix  
into mixtures  of  integer and half- integer spins, using uni t  spherical tensors  
U~(Ii ,  I:) of  integer r ank  K. In a following paper,  however,  it will be demons t r a t ed  
tha t  this impasse  can be overcome by defining a new set of  half- integer rank  uni t  
spherical  tensors.  
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